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CONVECTIVE REGULARIZATION OF

HIGH WAVENUMBERS IN TURBULENCE ANS SHOCKS

AWARD NO: FA9550-09-1-0158

Kamran Mohseni
Department of Aerospace Engineering Sciences, University of Colorado at Boulder

1 Introduction

This manuscript discusses the recent results in the research project on inviscid regularization
techniques with emphasis on applications to compressible gas flows. It is well-established
that general systems of quasilinear, first-order hyperbolic PDEs exhibit finite-time blowup
of smooth solutions, thus restricting well-posedness of classical solutions in short-time. For
instance, with conservation laws, one must generally seek global-in-time solutions in a larger
class of discontinuous solutions. Further physically motivated admissibility conditions are
placed in order to obtain the uniqueness and stability of such solutions.

The goal of such techniques is to modify the equations by smoothing out the nonlinear
terms through a mollification or convolution process. Consequently, higher regularity to
the solutions is achieved while, at the same time, capturing the physical behavior of the
original model. Mathematically, however, such qualitative properties must be verified in
order for this technique to be accepted. More specifically, when applied to a system of
partial differential equations usually supplemented with appropriate initial data, the global
well-posedness of smooth solutions should be shown. Moreover, the limit of the solutions for
the filtered system should converge in some sense to a physical or entropy solution of the
original system. In the subsequent sections, we provide the class of functions that will be
used as the spatial filters in our method along with the analytical results we have obtained
when applying filtering to both the transport model and for the more general quasilinear,
symmetric hyperbolic systems of PDEs.

2 Averaging kernels and Filters

Let us describe the appropriate filters we shall implement in the averaging. For a given
real-valued function f , we introduce an averaging kernel G and define the filtering of f by
the convolution operator

f(x) = G ∗ f(x) =

∫
Ω

G(x− y)f(y) dy

on the given domain Ω ⊆ RN .
Given some integer k ≥ 1, we only consider averaging kernels G ∈ W k−1,1(RN) that satisfy
the following:
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Properties Mathematical Expression

Normalized
∫

RN Gdx = 1
Non-negative G(x) > 0 for all x ∈ Ω
Symmetric |x1| = |x2| ⇒ |G(x1)| = |G(x2)|

Non-increasing |x1| ≤ |x2| ⇒ |G(x1)| ≥ |G(x2)|

Table 1: The properties of the averaging kernels

In the physical sense, the averaging should only provide non-negative weight to particles,
have no preferential direction, and should give more weight to particles that are physically
closer. In addition, we prescribe a parameter, α > 0, to such a filter such that

Gα =
1

α
G
(x

α

)
.

This parameter α acts as a scaling of the kernel and controls the level of filtering. One
example of a commonly studied filter is the Helmholtz filter f = f −α2fxx corresponding to
the averaging kernel

Gα(x) =
1

2α
exp

(
−|x|
α

)
.

3 Transport equations

Consider the multi-dimensional transport (or transportation) equations which adjoins the
continuity equation with the inviscid Burgers equation

ρt +∇ · (ρu) = 0
ut + u · ∇u = 0

(ρ(x, 0),u(x, 0)) = (ρ0(x),u0(x)).
(1)

The transport equations provide a simple system of two conservation laws for which classical
weak solutions may not exist for general initial data, thus a distribution solution consisting
of Dirac delta functions (delta-shock solutions) must be introduced [1,2]. On the other hand,
the transport equations model the dynamics of particles that adhere to one another upon
collision and has been studied as a simple cosmological model for describing the nonlinear
formation of large-scale structures in the Universe [3]. For example, u may represent the
flow field carrying dust particles with density ρ, and the delta-shock wave represents a
concentration of dust on a shock which attract the dust [4]. The filtering method employed
is the observable divergence method and the initial value problem (1) is modified as follows

ρt + ρ∇ · u + u · ∇ρ = 0
ut + u · ∇u =

(ρ(x, 0),u(x, 0)) = (ρ0(x),u0(x)).
(2)

The following existence result is shown.
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Theorem 3.1. Let ρ0 : Ω→ R and u0 : Ω→ RN be bounded C1 functions, then there exist
unique classical solutions u(x, t) and ρ(x, t) to the IVP (2).

4 Quasilinear symmetric hyperbolic systems

In this work we proposed a regularization method for quasilinear symmetric hyperbolic sys-
tems through a filtering of the coefficients and the source terms–similar to the filtering
described above. The primary motivation here is to generalize and unify the previous re-
sults on the Burgers’ and homentropic Euler equations while encouraging the application of
similar filtering techniques to other physical models other than those found in the study of
compressible gas dynamics.

Let us consider a symmetric hyperbolic system of N equations in n-space variables

ut +
n∑
i

Ai(x, t, u)uxi = h(x, t, u) in UT = Rn × (0, T ), (3)

where the Ai’s are symmetric N ×N matrices while h, u are N -vector-valued functions. We
always prescribe an initial condition to this system

u(x, 0) = u0(x). (4)

Throughout, we also assume that the system is strictly hyperbolic, i.e. each N ×N matrix
Ai(x, t, u) has N distinct eigenvalues

λ
(i)
1 < λ

(i)
2 < ... < λ

(i)
N .

We introduce spatial averaging to the coefficient matrices in (3) to prevent the finite-
time blowup of solutions, thus providing the global well-posedness of smooth solutions to
our modified IVP (provided we have sufficiently smooth initial data). More precisely, given
a filter, our spatial averaging, regularization technique modifies (3) into the following:

ut +
n∑
i

Ai(x, t, u)uxi = h(x, t, u) in UT = Rn × (0, T ), (5)

u(x, 0) = u0(x) for x ∈ Rn (6)

where the bar represents the convolution product taken with respect to the filter G in the
x-variables. More precisely,

Ai =
(
a

(i)
jl

)
=
(
Gα ∗ a(i)

jl (x, t, u)
)

=

(∫
Gα(x− y)a

(i)
jl (y, t, u(y, t)) dy

)
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The averaging for the vector-valued function h is defined similarly. Moreover we impose the
condition:

max
0≤t≤T

(‖A(x, t, u(x, t))‖1,∞, ‖h(x, t, u)‖1,∞) ≤ const (7)

for any solution u ∈ C([0, T ], Hk ∩ C1((0, T ), Hk−1) for (5)-(6). where u
.
= G ∗ u is the

convolution product taken with respect to the x-variables. First, we briefly compile several
standard results on linear, symmetric hyperbolic systems required in proving the main exis-
tence theorems for the quasilinear case. The reader is referred to [5–7] for further details on
their proofs.

Linear symmetric hyperbolic systems

The linear system on Euclidean spaces has the form

vt +
n∑
i=1

Ai(x, t)vxi = h(x, t) in UT (8)

with initial value v(x, 0) = v(0) = v0(x). The following conditions, we refer to by (C1), will
be imposed on the linear system.

(a) k > 1 + n/2 and v0 ∈ Hk.

(b) Ai are symmetric .

(c) t 7→ Ai(t)
.
= Ai(·, t) is of class C([0, T ], Hk(Rn,RN2

)).

(d) t 7→ h(t)
.
= h(·, t) is of class C([0, T ], Hk(Rn,RN)).

Proposition 4.1. Suppose that

v ∈ C([0, T ], H1) ∩ C1((0, T ), L2)

satisfies the initial value problem to (8), then v satisfies the energy estimate

max
0≤t≤T

‖v(t)‖2
0 ≤ eCT

(
‖v(0)‖2

k + 2

∫ T

0

‖h(s)‖2
0 ds

)
(9)

where the constant C depends on the supremum of A and its first-order spatial derivatives
on UT .

Another more general estimate is the following.

Proposition 4.2. Suppose that

v ∈ C([0, T ], Hk) ∩ C1((0, T ), Hk−1)

satisfies the initial value problem to (8), then u satisfies the energy estimate

max
0≤t≤T

(‖v(t)‖k + ‖vt(t)‖k−1) ≤ Cke
βkT

(
‖v(0)‖k +

∫ T

0

‖h(s)‖k ds
)

(10)

where the constants Ck and βk depend on the supremum of A and its spatial derivatives up
to order k on UT .
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Proposition 4.3. The initial value problem to the linear system (8) has a unique solution
of class C([0, T ], Hk) ∩ C1((0, T ), Hk−1).

Quasilinear symmetric hyperbolic systems

For the quasilinear case the following conditions will be made and will be referred to by
(C2). Define BR ⊂ Hk to be the closed ball with radius R.

(a) k > 1 + n/2 and u0 ∈ Hk.

(b) For u ∈ Hk, A(x, t, u) and h(x, t, u) are Hk-functions that satisfy (C1).

(c) The maps u ∈ BR 7→ Ai(x, t, u) and u ∈ BR 7→ h(x, t, u)

are bounded (maps bounded sets to bounded sets) and are C1 maps with

bounded derivatives.

Theorem 4.4. Suppose we have the a priori bound: Given any solution u ∈ C1(Rn× [0, T ])
of the IVP (3)-(4), there exists a constant CT > 0 depending only on T > 0 such that

sup
UT ,|α|≤k

{|DαA(x, t, u(x, t))|, |Dαh(x, t, u)|} ≤ CT . (11)

Then the IVP has a unique classical solution in C1(Rn × [0, T ]).

The proof is given in three main steps. In step 1, we set up an approximate iteration of
linear systems along with a corresponding transformation related to the global solutions to
these linear systems. In step 2 we show that this transformation is a strict contraction on
an appropriate function space for sufficiently small time. Further, the unique fixed point of
this contractive map agrees with the unique short-time classical solution to the quasilinear
IVP. Step 3 applies energy estimates along with (11) to extend this unique classical solution
further in time.

Proof. (Theorem 4.4) Step 1: Choose an arbitrary T > 0. We shall prove existence of
solutions up to this arbitrary time. First construct the linear problem:

vt + Ai(x, t, u(x, t))vxi = h(x, t, u) in UT (12)

v(x, 0) = u0(x). (13)

where the subscript i is short-hand for summation from 1 to n. The global existence and
uniqueness of solutions v ∈ C([0, T ], Hk) ∩C((0, T ), Hk−1) to this IVP holds. The first step
to showing existence of a solution to the quasilinear system is to consider the transformation
T defined by v = T u where u is given and v is the solution to (12)-(13). Our goal is to prove
this transformation is a strict contraction on a suitable function space. We consider

u ∈ Xk,τ .
= C([0, τ ], Hk(Rn,RN)).
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Using the energy estimates, one has

max
0≤t≤τ

(‖v(t)‖k + ‖vt(t)‖k−1) ≤ K1e
K2τ

(
‖v(0)‖k +

∫ τ

0

‖h(s)‖k ds
)
, (14)

where the constants Ki depend only on the constant CT from (11). Define

Bk,τ
R

.
= {u ∈ Xk,τ : ‖u‖Xk,τ ≤ R}.

It is clear from (14) that T maps Bk,τ
R to itself for sufficiently small τ and a suitable R. We

now show that T is a contraction on Bk,τ
R in the X0,τ -norm.

Let vj = T uj for j = 1, 2 and set w = v1 − v2. Then w satisfies the linear system

wt + Ai(u1)wx = H(x, t) and w(0) = 0

where H(x, t) = h(x, t, u1)− h(x, t, u2) + (Ai(x, t, u2)−Ai(x, t, u1))(v2)x. From the Lipschitz
continuity of h with respect to u and Sobolev embedding, ‖H(t)‖0 ≤ C‖u1 − u2‖0 where
the constant C depends on R and the Lipschitz constants of Ai and h. Using the energy
estimate (9), we obtain

max
0≤t≤τ

‖T u1 − T u2‖2
0 ≤ CeK2ττ max

0≤t≤τ
‖u1 − u2‖2

0.

Hence T : Bk,τ
R 7→ Bk,τ

R is a strict contraction with respect to the X0,τ -norm for sufficiently
small τ .

Consider the iteration scheme: let u(j+1) = T u(j) with u(0) = u0. As a consequence of
the contraction mapping principle, u(j) converges to a unique u ∈ X0,τ i.e.

lim
j→∞

max
0≤t≤τ

‖u(j) − u‖k = 0. (15)

Step 2: We show in this step that this limiting function u belongs in C1(Rn× [0, τ ],RN).
Energy estimates and interpolation inequalities imply that, for any s with 0 ≤ s < k,

max
0≤t≤τ

‖u(j) − u(l)‖s ≤ Ck max
0≤t≤τ

‖u(j) − u(l)‖1−s/k
0 max

0≤t≤τ
‖u(j) − u(l)‖s/kk (16)

≤ C max
0≤t≤τ

‖u(j) − u(l)‖1−s/k
0 . (17)

It follows from this and (15) that

lim
j→∞

max
0≤t≤τ

‖u(j) − u‖s = 0

for any 0 ≤ s < k. Choosing s so that s > 1 + n/2, Sobolev embedding implies

u(j) → u ∈ C([0, τ ], C1(Rn)).
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In addition, it follows immediately from

(u(j′) − u(j′−1))t = h(x, t, u(j′))− h(x, t, u(j′−1))

+ A(x, t, u(j′−2))u(j′−1)
x − A(x, t, u(j′−1))u(j′)

x

that u(j) converges to u in C1([0, τ ], C(Rn)), thus u ∈ C1(Rn × [0, τ ],RN).
Step 3: In this step, we extend the local classical solution to the whole interval [0, T ].

The condition (11) and the previous a priori energy estimate imply that we have a uniform
bound max0≤t≤T ‖u(t)‖k ≤ KT for some constant KT > 0. Therefore, we can take the
radius of the ball R to be sufficiently greater than KT then repeat the above local existence
argument on (τ, 2τ), (2τ, 3τ), (3τ, 4τ), . . . until we have covered [0, T ].

Application to spatially averaged systems

Let us apply theorem 4.4 to spatially averaged systems. To do so, we verify condition (11)
holds. Given |α| ≤ k, Young’s inequality and (7) imply

‖Dαa
(i)
jl ‖∞ ≤ ‖G‖k−1,1‖a(i)

jl ‖1,∞ ≤ ‖G‖k−1,1const.

A similar argument holds for h, thus verifying (11). Thus we have shown the following.

Corollary 4.5. Consider the IVP to the regularized system (5)-(6) along with the same
assumptions made on Ai, h, and u0 as was stated in theorem 4.4 and condition (7). Then
there exists a unique global-in-time classical solution for this IVP.

5 Zero α convergence to weak solutions conservation

laws

Our inviscid regularization technique has an important application to conservation laws. We
want to study the convergence of the solutions uα as α limits to zero in order to justify such
a regularization method in the sense that it captures the ‘behavior’ of the original equations.
For instance, several important questions arise. Does the sequence of averaged solutions
converge in some appropriate function space as the filtering parameter tends to zero? If so,
does this limit function satisfy the original, non-averaged system in the weak sense? Consider
the following 1d system of conservation laws with forcing

ut + f(u)x = h(x, t, u) in UT = R× (0, T ) (18)

u(x, 0) = u0(x) for x ∈ R (19)

where u, f, h are RN vector-valued functions on UT . Let A
.
= Df and place the same

conditions on the resulting quasilinear system

ut + [Df ](u)ux = h(x, t, u) (20)
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as was given in theorem 4.4. In addition to these previous assumptions, we place further
conditions as follows.

Further Assumptions: Let n = 1, k = 2, supUT |h(x, t, 0)| ≤ C0 for some constant C0, the
initial data has bounded total variation, the Jacobian of the flux f is a diagonal N -by-N
matrix, A(u) = diag(λ1(u), λ2(u), ..., λN(u)), and let the filter satisfy

‖uαx(uα − uα)‖L1
loc

= O
(

1

α

)
(21)

for all u ∈ L1
loc

We apply our inviscid regularization to this system of conservation laws to obtain

ut + A(uα)ux = h
α
(x, t, uα). (22)

However, we consider a slightly different type of averaging

ut + A(uα)ux = h
α
(x, t, uα). (23)

Observe that if one has flux function f = f(u) that is a quadratic polynomial in u (e.g.
Burgers’ and homentropic Euler equations), then A is linear in u and the two averaged
systems are equivalent. Fortunately, for general smooth flux, the global existence theory for
the 1d system (23) still holds.

Our aim for this section is to verify that the global classical solutions for the Cauchy
problem to (23) does in fact converge to a weak solution for the Cauchy problem to (18)-
(19). By a weak solution we mean a solution to the Cauchy problem in the following sense.

Definition 5.1. A function u : R × [0, T ] 7→ RN is a weak solution of the Cauchy problem
(18)-(19) if u is continuous as a function from [0, T ] into L1

loc, the initial condition (19)
holds and the restriction of u to the open strip UT is a distributional solution i.e.∫ T

0

∫ ∞
−∞

uφt + f(u)φx + h(x, t, u)φ dxdt+

∫ ∞
−∞

u0(x)φ(x, 0) dx = 0 (24)

for every C∞ function φ with compact support contained in the set R× (−∞, T ).

The notion of proving the convergence result is summarized in two key steps. In step
1, the required uniform, BV , and L1 estimates are established on the sequence of averaged
solutions {uα}α>0 that guarantee compactness in C([0,∞), L1

loc(R)). In step 2 the limit
function in the α → 0 limit is shown to satisfy the definition of a weak solution for the
Cauchy problem. Without loss of generality, we prove the case for the scalar case N = 1.
The proof follows similarly for N > 1 as a consequence of the diagonal assumption we
imposed on the matrix A.

The following highlights the results needed in obtaining our desired convergence to weak
solutions result.
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Proposition 5.2. The sequence of solutions uα : R× [0, T ] 7→ R to the Cauchy problem to
(23) satisfy the following bounds.

|uα(x, t)| ≤M1 for all x, t,

T.V.(uα(·, t)) ≤M2 for all t

where M1 and M2 are independent of α.

With these a priori bounds, we can then show the following.

Theorem 5.3. The corresponding sequence of averaged solutions uα : R × [0, T ] 7→ R
from Proposition 5.2 has a subsequence {uγ}γ that converges strongly to some function u
in C([0, T ], L1

loc(R)) as γ limits to zero. Moreover, this limit function u is a weak solution
to (18)-(19).

We should remark that depending on the filter in question, further conditions on the
flux f may be necessary in order for (21) to hold. To illustrate this, consider the Helmholtz
filter. As the subsequent calculations will show, we must take f = f(u) to be a quadratic
polynomial in u.

Using the definition of the Helmholtz filter, we may multiply (23) by a test function φ
then integrate by parts to obtain∫ T

0

∫
R
uαφt + f(uα)φx + h

α
(x, t, uα)φ dx dt+

∫
R
u0(x)φ(x, 0) dx

=

∫ T

0

∫
R
f ′(uα)(uα − uα)φx dx dt−

α2

2

∫ T

0

∫
R
f ′′(uα)(uαx)2φx dx dt

− α2

2

∫ T

0

∫
R
f ′′′(uα)(uαx)3φ dx dt

.
= E1 + E2 + E3.

Clearly, E1 limits to zero as α tends to zero since ‖uα − uα‖L1
loc

= α2‖uαxx‖L1
loc

= O(1/α) for
the Helmholtz filter and E3 = 0 by our restriction on f . It remains to be shown that the
term E2 limits to zero in the α zero limit. This follows from the following estimate

α2

2

∫ T

0

∫
R
f ′′(uα)(uαx)2φx dx dt

≤ 1

2
‖f ′′(uα)‖L∞‖φx‖L∞

(
1

α
‖uα‖L∞

)
α2

∫ T

0

∫
R
uαx dx dt

≤
(

1

2
‖f ′′(uα)‖L∞‖φx‖L∞‖uα‖L∞M2T

)
α.

Again, compactness of the sequence of solutions will allow us to formally take the limit
as α tends to zero and the limiting function is a global weak solution to the original Cauchy
problem.
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6 Numerical Simulation

Our regularization technique has been quite successful in regularizing Burgers equations and
homenetropic Euler equations [8–14]. In the following we present simulation results for our
1D regularized Equation.

1D Regularized Euler Equations. The equations for the Euler equations without the
homentropic assumption are

ρt + ρ̄ux + ūρx = 0 (25a)

(ρu)t + ρuux + ū(ρu)x + Px = 0 (25b)

(ρe)t + ρeux + ū(ρe)x + Pux + ūPx = 0 (25c)

P = (γ − 1)

(
ρe− 1

2
ρu2

)
. (25d)

With analytical techniques these equations have been proven to converge to weak solutions
of the original equation provided modest assumptions on the solutions. We have also found
analytical traveling wave solutions for both sets of equations which has led to analytical
results showing that shock thickness can be controlled by varying the amount of filtering
used in the low-pass filter.

Numerically the equations are shown promising behavior. The solution appear to be well
regularized and capture much of the behavior of the original equations. Figure 1 shows a
double shock tube simulation for the modified homentropic Euler equations plotted against
the solution to the original homentropic Euler equations. Both the expansion wave and
shock behavior are being captured. Figure 2 shows a shock tube simulation for the Euler
equations. The modified equations are showing a regularized solution that is capturing the
expansion wave, contact surface, and shock.
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(a) (b)

Figure 1: This figure shows a numerical simulation of the modified homentropic Euler equa-
tions (dashed line) plotted against the solution to the homentropic Euler equations (solid
line). Here the value of α = 0.05. In both figures it is clear that the modified homentropic
Euler equations are capturing both the expansion wave and shock behavior. (a) The velocity.
(b) The density.

(a) (b) (c)

Figure 2: This figure shows a numerical simulation of the modified Euler equations (dashed
line) plotted against the solution to the Euler equations (solid line). Here the value of
α = 0.05. In the figures it is clear that the modified Euler equations are capturing both the
expansion wave, contact surface, and shock behavior. (a) The density. (b) The velocity. (c)
The energy.
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